| System Solutions \& Customized Solutions | Individual process solutions adapted to the customer's product Linkage and combination of technology platorms to form integral system solutions System supplier of complete lines with turnkey services |
| :---: | :---: |
| Technology for Inhalers \& Diagnostics | - Lines for the dosing and weighing of micronized powders Lines for the dosing and weighing of pasty media and liquid products Machines for the assembly of inhalers, inhaler components, active ingredient carriers and diagnostic products Machines for filling inhaling devices and inhalation cavities with extremely small volumes In-process checks and function tests for inhalation and diagnostic products |
| Capsule \& Powder Technology |  |
| Blister \& Tablet Technology | OmniControl - Checking system for pharmaceutical solids Test units and production machines for the manufaccure of powder and liquid blisters Blister buffering and traying systems Units for nesting and groupig of blisters / blister folding machines Wallet packaging lines includuing line synchronization / turnkey service |
| Web Converting Technology | PatchLine Complete lines for the manufacture and inline packaging of: <br> Transdermal systems (reservoir \& matrix), wound dressings, surgical and special patches |
|  | FoilLine Instalations for manufacturing foil products: <br> Oral film strips, double bags for enteral nutrition, urine bags, Diagnostic products etc. |
|  | FormPackLine Installations for the packaging of products in molded film/foil packs for - Diagnostic tubes, surgical suturing material, lithium-ion batteries, Care creams, detergents and cleaning agents, catheter packaging etc. |
|  | SachetLine Machines for the manufacture, filling and sealing of four-edged sealed sachets Dosing systems for bulk materials and sachet leveling systems |
| Syringe \& Injection Technology | Machines for the assembly and filing of depot injection syringes with solid implantates Machines for the assembly and filing of mutti-chamber injector syringes with powder and liquid Machines for the assembly of needle-free injectors (needle-free syringes) |
| Packaging Technology | WalletLine Modular packaging machines for wallet packs <br> Peripheral units for the handling and conveying of components for wallet packs <br> Systems for stacking and grouping for end packing |
|  | CartoningLine Horizontal cartoning machines for folding cartons Product specific feed systems, tray loading and unloading systems Buffering systems for packages and package components |
|  | TopLoader Modular TopLoader packaging machines for the manufacture of: Pharmaceutical multi-product packs Universal product end packing |
|  | EndPackingLine Packaging machines and handling systems for secondary packaging and end-of-line applications: <br> - For tray, display, multiple and end packaging <br> - Pick-and-Place systems for individual handling and packaging Turnkey project planning and realization |
| Aseptic Technology | - Machine engineering in GMP and validatable execution Cleanroom technology for a wide range of applications Production lines for assemblies in cleanroom environment |

## MR HERロ

## Verpackungsmaschinen GmbH

Helmholtzstraße 4, 71573 Allmersbach im Tal, Germany
Phone: +49 (0)7191/501-0, Telefax: +49 (0)7191/501-244
info@hoefliger.com, www.hoefliger.com

Technologies
for end packaging

## 11 Harro Häfliger

## PHARMA

It is our task to optimize the manufacturing and pak kaging processes of our customers. We consider integrated systems, from the manufacturing process through to an automated end packing solution, with the philosophy that the reduction in process costs creates a fundamental competitive advantage

We are able to deal flexibly with the tasks in hand due to the broad product range of machines for the different end packing variants. From the pool of
basic machines available we configure complete end packing peripheries. If the process requires additional packing and handling systems, we plan and implement them individually to match the specific task.

We have decisively expanded our packaging capability by setting up an additional plant for the projec planning and installation of end packing lines. The the development and implementation of technology for end-of-line applications.

In close collaboration with leading packaging manu facturers Hofiger provides its customers with consulting services for special questions. When it is question of using the optimal type of packaging, a special product presentation or of fine tuning the overall process - at Höfliger you will always find the right contact person.

| Multi-product package |  |  |
| :--- | :---: | :---: |
| TopLoader TL |  |  |$\quad$ Page $\quad 4 / 5$

## CONSUMER PRODUCTS

| End packaging of <br> spray cans in shipping cartons | Page | $14 / 15$ |
| :--- | :--- | :--- |
| Complete line for packaging <br> contact lens strips | Page | $16 / 17$ |
| Complete line for packaging <br> stamps | Page | $18 / 19$ |
| End packaging of <br> writing pads in shipping cartons | Page | $20 / 21$ |

FOOD

TopLoader TL:
Packaging of application sets in multi-product packages.


On this line top loader cartons are
erected and then loaded with smal erettles and other care components using the top loading process.
The preparation containing the active substance is filled into small bottles on
an upline machine. The screwed, labeled an upline machine. The screwed, labeled Gluing and erection of the carton blank is performed at the beginning of the packaging process. An intermediate layer is inserted into the carton as a receptacle for the container. This is punched out accordingly to fix the bottle. This ensure safe storage of the bottle in the pack. leaflet are integrated into the pack, thes being brought together and stacked in a separate handling system.

Product components:
These processes require very precise logistical procedures. The solutions for ledge of handling techniques for the top loading process. At the end of the line the pack is closed, labeled and transferred for end packing into ship-
ping cartons. ping cartons.


Handy solutions: Pick-up and transfer
of the component stack of
via a gripper system


Production sequence

1 Erection of the blank 2 Blank code control
3 Feed of the
intermediate layer
4 Laser coding
5 Laser embossing control
6 Bottle feed on two lanes
7 Bottle insertion
8 File feed
9 Leaflet feed


The end packaging solution for medical products.

Product components:


Carton closure is via a flap folding wheel, lid turnguide and a press-in wheel, guar-
anteeing gentle pack closure. The lid can anteeing gentle pack closure. The lid can
be closed optionally with hotmelt glue or by means of tuck-in flaps.

At the end of the packing process there are several pack control routines:

- Control for any missing products via weight control
Inspection for an open pack lid via sensory analysis Multiple labeling and coding


or secondary packaging the products are fed to the top loader line
from an upline Höfliger patch machine with an integrated bag packaging module.

The carton blanks are erected by a plunger and a folding pocket. Various pack forms can be processed using the otmelt gluing process or glueless inter ocking. These can be cartons with an tached lid or simple trays. A Flexpick cartons. The Flexpicker picks up the patches, which are packaged in a bag, from the cross belt in order to stack them in an exact position in the carton. The booklet is also fed transversely to he line and is positioned in the multiproduct pack by way of friction guides

## Production sequence

1 Blank removal via suction pad 2 Provision of the blank 3 Gluing of the side walls 4 Plunger erection
5 Bag feed from the patch production machine
feed 7 Pack closure 9 Pack pass packs

## Pack controls:

A "Open lid"
fail pack outfeed
B "Missing product"
fail pack outfeed
Overfeed of pass packs for labeling

| Technical data |  |
| :--- | :--- |
| Output: |  |
| Carton erector: | Single-track version <br>  <br> 35 (to 100 ) cartons $/ \mathrm{min}$. |
|  | Two-lane version |
|  | Up to 160 cartons $/ \mathrm{min}$. |
| Flexpicker: | Up to 150 picks $/ \mathrm{min}$. |
| Carton closer: | 35 (to 240 ) cartons $/ \mathrm{min}$. |

## Top loader carton sizes.


To
$400 \quad 300 \quad 150 \mathrm{~mm}$

The end packaging line for dressings.

In the top loading process the singularized rolls are inserted directly into the oader cartons an integrated line has ee configured, which consists of the following line components

2 CartonErectors
1 sawing and loading robot
1 CartonClosing system
1 CasePacker
Two erectors connected in parallel pro luce 170 cartons per minute and feed The robot's gripper system takes over the roll segments, which have been pre cut to lengths of 50 to 200 mm .
After take-over, spreading to the center spacings of the top loader cartons that have been fed.

## Clean and fast: Erection of glued <br> Erection of glued top loader cartons



## cartons.

Uniting of the two on one product lane takes place during the overfeed to the carton closing system. In a few work steps the closure flap is folded over and the pack is securely closed. The integrated labeling unit provides for coding with the product-specific data.
The packs are then grouped stacked and packed on the case packer into shipping cartons.


CartonClosing-
System

## The special machine for wallet packs / sleeves.



For years Höfliger has been one of he leading manufacturers of wallet packs are cartoned and packed into shipping cartons immediately after the production line.

The sleeve pack is an alternative pak kaging solution. It is highly functional for transport and storage. The sleeve pack ensures optimized storage and stacking - without the wallet warping or shifting.


To realize this packaging process we specifically matched to this pack variant:

Wallet feed via accumulation belt with two-lane cross discharge
Erection of the wallet packs via
a product-specific guide
and handling system
Grouping and stack formation in an obliquely positioned magazine pocket
Pack insertion of the stacked
packs via overhead conveyor
Weight control for the purpose
of checking the pack for completeness
Inline coding
Palletization via a 4-axis gantry robot

tablet blisters tablet blisters 3 Booklet feed 4 Blister feed 5 Camera contro Camera control 7 Label feed

| 8 | Laser coding |
| :--- | :--- |
| 9 | 2-track accumulation belt |
| 10 | Formation of stack |
| 11 | Insertion into sleeve |
| 12 | Verschließen Sleeve |
| 13 | Closure of sleeve |
| 14 | Checkweigher with turning |

Output:
$\begin{array}{rrr}760 & 120 \quad 70 & \mathbf{m m}\end{array}$
timensions on request

Complete line for surgical suture.

At end of an extensive and very complex process for the manufacture of sterile surgical suture material there is a packaging line, which per-
forms the following tasks: forms the following tasks:
Handling of sheets of film
Removal from the carrier system and transfer onto the product conveyor of the die-cutting machine
Die-cutting of single packs from the sheet blank
Code inspection of the pack imprint Leakage test before the cartoning to ensure that the pack is sterile.

Packaging in a user-friendly cardboard box system:
In practice the surgical suture is inser ted sorted according to needle type the pack is the paramount objective In compliance with these requirements the pack is constructed with a bottom tray part and a sleeve with an integrated window for product-related data.

The trays are erected by the flat-folded blank, loaded with a booklet and traversed under the pick-and-place unit. After the stacking of 12 suture materia packs each, the sleeves are pushed onto the trays.

## Process:

Feed for the cardboard box blank

Sleeve

Die-cutting of individual packs


Production sequence
1 Tray feed
2 Lifting up and transfer
2 into conveyor belt 3 Die-cutting of
indie-cutting of
individual packs
4 Turning table for
4 Turning table for
5 Inspection of pack underside / manual sorting of fail parts

Technical data
6 Turning on upside
7 Leakage test in a vacuum
8 Cardboard box erection
9 Bar code reading
19 Booklet feed
$\sqrt{11}$ Insertion of packs via robot Output: 10 cardboard boxes / min.
12 Sleeve overfeed $\quad 120$ products / min.

End packaging of spray cans in shipping cartons.

Compact construction, short sizechanging times and good accessibility were the basic guidelines for thi taken into consideration that two d ferent packaging media - either a tray or a wrap-around packaging unit with an attached lid - are used.

For realization of the line a total of three EAGLE modules have been integrated into the packaging line - each module having independent tasks:
The cartons are fed on two
tracks into a horizontal magazine
The side flaps of the blanks are glued and erected by the first robot
The cans are fed parallel to the folding carton chain, picked up in a swiveling movement by the second robot and with a lift stroke are loaded to the erected packs
The third robot folds the attached lid and closes the pack. Alternatively preglued or interlocked tray lids can be emplaced in this station Fast size-changing in 15 mins.


The special features of the EAGLE:
Versatile use as a stand-alone unit or as a module within a line Designed for a performance of up 50 strokes and a maximum loadbearing capacity of up to 60 kg Easy adaptation to new tasks through a copy \& teach-in program. The paths o be covered or changed sizes are calculated by the control unit itself With 2-4 axes for additional swiveling and rotating movements



## Complete line for packaging <br> contact lens strips.

Before removing the contact lenses from the manufacturing process, from coding through to the finished shipping process.
The contact lens strips are fed vertically in conveying trays and nested by means of a handling system. By means of a transfer belt the product stacks reach pocket chain of the cartoning machine.

Special solutions are used for processing the folding carton blanks: The blanks are unloaded from the vertical blank magazine and lasercoded within a horizontal feed segment Due to the design of the pack with a tear-open perforation the folding carton flaps are closed in an order that deviates from standard
 Gripper system for removal of the contact lens strips from trays


Complete line for packaging stamps.

Office stamps are completed on an upline assembly machine and transferred to the subsequent end packing process. This process requires precise and product-conserving procethe stamps being sensitive to knocks and scratches.

A linearly operating vibrating unit and a turning wheel are used for the product feed. With a
vertical rotational movement the stamps are deposited into the product chain from vertical to horizontal position. In addition a blank print image card ia
inserted into the product chain via a friction delivery. In later use this card is clipped into the transparent window which is an integral part of the stamp. ted folding carton blank a leaflet is led folding carton blank a leaflet is product protection is ensured for pack closure through the gentle guidance of the closure flaps

## 

CasePacker - special handling during product insertion as well:

Before the end packaging process the folding cartons pass through a labeling unit with a subsequent completeness control by a checkweigher. Due to the pack the pack stacks are carefully placed in rows, grouped and overfed into the erected shipping carton by an overhead belt pusher.

## The right push: Insertion of the sta <br> Insertion of the stacked folding carton



Stacked and grouped:
Loading of the folding carton into


Feed of
assembled
stamps

folding cartons

## Production sequence

1 Stamp feed
2 Turning whee
4 Folding chain
5 Opening of the
folding carton
6 Addition of blank labels
7 Product loading
8 Folding carton closure
9 Overfeed to the case packer

10 Labeling
11 Checkweighing
12. Cross discharge of
folding cartons
13 Stack formation and grouping
14 Shipping carton erection
15. Pack stack insertion

6 Carton flap closure
Adhesive tape
17 Pack outfeed

## Technical data

Mechanical performance:
MKT 120-5":
Sidera
Up to 100 cartons / min. Up to 10 cartons / min. Up to 15 cartons / min.

Shipping carton sizes:
Minimum L B H $\begin{array}{llll}\text { Maximum } & 300 & 200 & 100 \mathrm{~mm} \\ 600 & 400 & 350\end{array}$ Maximum $600 \quad 400 \quad 350 \mathrm{~mm}$


Individually intermatched packaging Individually intermatched packaging
and handling technologies are used for the packaging of stacks of writing blocks.

Six writing blocks in a stack, shrink wrapped in film, reach the robot unit via a feed belt. The six-arm robot is equipped with special devices for fixing the corners and for undergrasping the very unstable stack formation.
Parallel to this the bottom part of the cardboard container of the flat blank is inserted into the product chain and the f $10^{\circ}$ This special feature in the processing ensures improved precision of the product loading. After loading the carton bottom surface with six stacks he side flaps are glued, folded and pressed on.

At the next station the feed of the cover blank is effected, the rear and front flaps being folded over beforehand. Due to this prepackaging the lid is positioned exactly on the bottom part of the carton and thus closed.




## Production sequence

1 Base blank feed 2 Folding of the front and rear side walls | 3 | Container feed |
| :--- | :--- | :--- |
| 4 | Container prestacking |

5 Insertion of the
5. Insertion of the
containers by robot 6 Folding of the glued flaps
7 Application of glue spots
8 Folding and pressing-on
8 folding and press

Packaging line for writing blocks

9 Lid blank feed

Technical data
Feed performance: $\quad 50$ containers / min.
Production performance: 7 outer cartons $/ \mathrm{min}$.
Tray pack sizes:
L B H
11 Setting-down on the loaded
12 Folding of the glued flaps
4 Application of glue spots the remaining lid flaps Discharge conveyance of the
finished carton
$\begin{array}{llll}\text { Minimum } & 300 & 200 & 100 \\ \text { Maxm }\end{array}$
$450 \quad 350 \quad 300 \mathrm{~mm}$



Cascading:
Pre-stacking o
Pre-stacking of writing pads


## Packaging logistics: Placement of the prefo



## Product infeed for

 gingerbread.Gingerbread cake is a product that is extremely difficult to handle, the qua-
lity of which, in addition to the quality lity of which, in addition to the quality cal decoration and presentation. Measured by these criteria a line concept has been developed, which does absolute justice to these requirements.


The task consist of the inline control loading and conveyance of the gingerbread cakes in trays:
12 lanes with a metal transfer on
2 lanes with a metal detector
Camera control on the product feed for shape and caking of the ginger bread with the outward transfer
ersing belt with
Reversing belt with a filling nose for transfer of the gingerbread cake into e trays provided
rection of the gingerbread cake from horizontal to a vertical position ingerbread cakes per with six

Process:
Infeed


Production sequence
1 Gingerbread cake
2 Camera control
3 Outfeed of defective
products
4 Tray loading position
5 Unstacking and feeding
of the plastic trays
6 Belt conveyor
7 Tray conveying system
with turnguides

## Technical data

Production output:
1.200 tray packs / min.

67 gingerbread cakes / min.

## Tray pack

L B H
sizes est

